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Exact solutions for transition amplitudes for particle production and stimulated 
emission by external sources are derived forfinite temperatures. More precisely, 
we obtain the expressions for amplitudes for the emission of an arbitrary number 
of particles by the sources, and corresponding stimulated emission processes, 
when one is dealing with a generalized multiparticle state (rather than the 
vacuum) at finite temperatures. The solutions are given for spin-0, massive and 
massless (photons) spin-l, and spin-�89 particles. As applications, we study the 
process: photon ~ any photons, in the presence of a strong external electromag- 
netic current, with the net release of a specified energy, and work out the power 
radiated by a given electromagnetic current distribution, all at finite temperatures. 
The latter application includes the radiation emitted by a point charged particle 
at T r 0 as a special case. 

1. I N T R O D U C T I O N  

We extend our earlier systematic analysis  of s t imulated emiss ion 
( M a n o u k i a n ,  1986) and  particle p roduc t ion  ( M a n o u k i a n ,  1984) by external  

sources f o r f i n i t e  t empera tures  T r  0. Such a systematic analysis  is cer tainly 
lacking in the l i terature [see Schwinger (1970) and  Pardy (1989) for earlier 
work]. In  the f ini te- temperature  case, the so-called vacuum states are 
replaced by general ized mult ipar t ic le  states. We give a complete  der ivat ion 

of  the cor responding  ampl i tudes ,  for arbi t rary strong sources, directly from 
our  earlier results ( M a n o u k i a n ,  1986) given for T = 0. The analysis  is given 

for spin-0,  massive and  massless (photons)  sp in - l ,  as well as for spin-�89 
particles. As appl icat ions ,  we s tudy  the process: pho ton  ~ any  photons ,  in 
the presence of a s trong external  e lect romagnet ic  current,  with the release 
of  a net  energy, and  also work out the power  radiated by a given current  
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distribution, all at finite temperatures. The latter application includes the 
radiation emitted by a point charged particle for T # 0 as a special case. 
Finite-temperature effects have been widely applied in recent years to many 
areas of physics in field theory and particles (Linde, 1979, 1984; Donoghue 
et al., 1985, and references therein), in gravitation (Linde, 1979; Manoukian, 
1990), and in condensed matter physics (Fetter and Walecka, 1971; 
Manoukian, 1987; Pardy, 1989). 

2. PARTICLE PRODUCTION 

2.1. Introduction 

Consider a real scalar field interacting with an external source K(x). 
Suppose we have initially N particles, prior to the switching on of the 
source, and after the source is switched off we end up again with the N 
particles in the same configurations. We introduce a discretization notation 
(Schwinger, 1970; Manoukian, 1984) for the momentum variable by setting 
in the process 

Kp : ( dwp)l/2K (p) (1) 

d3p pO = +(p2+ m2)1/2 (2) 
d% (2~r)32p0, 

K(p)  = j- (dx) e-iPXK(x) (3) 

Let {Pl, P2 . . . . .  } denote the set of all momenta in the convenient discrete- 
momentum notation. Let N~, N2, �9 �9 denote the number of particles of the 
N particles having momenta p~ ,p2 , . . . ,  where N1+N2+ . . . .  N. The 
transition amplitude in question has been derived in Manoukian (1986), 
equation (16), and is given by (T=O) 

(N; N, ,  N : , . . .  IN; N1, N: . . . .  }to 

. ) ~ ,  (_tK,I2) N,-m, (_1K212) N~-~2 (0+10 )K 
~- ( N I  I N 2  ~ . . . .  [ ( N , - m , ) [ ]  2 [(N2-m2)!]  2 " ' m , ! m 2 ! . . .  (4) 

where Y.* stands for a summation over all nonnegative integers ml, m2, . . .  
such that 0-< rni-< Ni, i = 1, 2 . . . .  ; Ki - Kp,, and (0§ [0_) K is the familiar 
vacuum-to-vacuum transition amplitude: 

(O+,O_)K = e x p [ ~ / ( d x ) ( d x ) K ( x ) A + ( x - x ' ) K ( x ' ) ]  (5) 

where 

A+(x -x ' )  = i ~ dwp e ip(x-x'~ for x~  x '~ (6) 
3 
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Nondiagonal transition amplitudes, generalizing the expression in (4), are 
also derived in Manoukian (1986), equation (16). 

Equation (4) may be rewritten in a more compact notation by noting that 

NI ( _ ] K I ] 2 ) N ,  m, S l !  u~ (O/Oal)ml (a l )N,  
Y Y 

rnl=0 ( N l - m l ) !  (N1-  ml)! ml! m~=o ml! (N1-  ml)! 

(O/Oal + l )  Nl 
- (a,) u,, a 1 --= [ - I K d  2] 

N~ ! 
(7) 

Hence 

oo 1)N,(ai)N ' 
(N; N , ,  N 2 , . . . [ N ;  N~, N 2 , . . . ) K  =(0+]0_)K ]7i (O/Oa,+ 

i=1 Ni ! 
(s) 

ai = [-]Ki[2]. Temperature dependence is introduced by averaging (Schwin- 
ger, 1970) the expression on the left-hand side of (8) with the statistical 
factor C I I~ l  (exp _flpO)U,, where pO= (p2+m2)l/2 ' fl = 1/kT,  C is a nor- 
malization factor, and k is the Boltzmann constant. Using the easily derived 
equality 

oo 
~.~ ~, ( x 1 ) N I ( x 2 )  N . . . . .  ~ 1 

N=0 NIq-N2-r- . . . .  N ~ I i=  1 (1 --X,)  (9) 

we obtain for C 

C =  ~ ( 1 - e  -t~p~ 
i=1 

Therefore, this thermal average of (8) is 

[ e-~P~ (O/ Oai-l-1) ]N~ 
(o+lo_>Kc 

N=0 NI+N2+ . . . .  N Ni  ! 

To carry out the summations in (11), we note that 

e-~p,~N , (O/ Oal + 1) N, (al)N, 
N~! 

Nl! t ~ ( p l - - a l )  

(lO) 

-/3ff ~ 
f~o dy, [Ple  '(--iy' + l)]N' eivCt,, ,,i 

(a,) N' (11) 

(12) 
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Therefore, for the thermal average in question denoted by (G+] G_) K we 
have 

(G+IG_)K=-C F~ 2 (e-~P?) N' 
N = 0  Nt+  N2+ . . . .  N i = l  

X <N; N1, N 2 , . . .  IN; N, ,  N 2 , . . .  )K 

N=O j=l I ~176 dTy �9 _ =C<O+IO-) K ~ ~(f~~ -f-s "~ ) 
co /3o [S,=, p,e-  P,(-iT~+ 1)] N 

X 
Nt  

= IL-  IL "" 
j = l  2~" 
/30 

x exp[ps e- PJ(-iyj + 1) + iTy(Ps - as)] (13) 

<G+ I G_) K = C(O+ [O_>K }1 d& a ( & - & e - Z :  - aj) exp py e - z :  

Or 

e_/3p~ ] 
= (0+10_) K ~ exp e_~pO aj 

j=~ 1 -  �9 

The expression in (14) may be rewritten in the equivalent form 

(a+l  G-> K =exp  (dx) (dx') K(x)A+(x-x ' ;  T)K(x')  (15) 

A+(x-x ' ;  T)= ~ - ~ e  'p(x-x) p2+m2_ie exp[f l (p2+m2), /2]_l  (16) 

e ~ +0. The expression in (15) coincides with that of Schwinger (1970) 
obtained by different methods. 

Now we are ready to study production at finite temperatures. To this 
end, we write K(x)= K~(x)+K2(x), where the source K2 is switched on 
after the source K~ is switched off. Then 



Particle Production and Stimulated Emissions 1317 

where 

I _ 0 7 1 / 2  

I(p=(dwp)l/2K(p) coth -~--J 

Upon using the unitarity expansion 

(18) 

oo 

(G+I G-) K= E E 
N = O  N I + N 2 +  . . . .  N 

(G+IN; N1, N2, . . .  )K~(N; N1, N2, . . . [G_) K' 

(19) 

we may infer from (17) that 

(N; N1, N2,...IG_) K =(G+IG_) K (i/(p')u' (iI(p2)u2... (20) 
(N1 !)1/2 (NzI)W2 

(il(*')N~ (il(*2)N~ �9 (21) 
(G+I N; N,, N2, . . . )K =(G+IG_)K (N1 !)1/2 (N2!)1/2"" 

where Ni denotes the number of particles with momenta Pi- Hence, from 
our earlier work (Manoukian, 1984) we may infer that the probability that 
a source K emits N particles, Na, of which have momenta in Ale  
R3 , . . . ,  Na~ of which have momenta in AsCR 3, where Na+NA2+...+ 
Na = N, is 

(.[~1 &oQ IK(Q)I 2 coth(flQ~ N~, 
Na! 

(~a, d~Q [K(Q)[ 2 coth(flQ~ N~ 
X " �9 �9 

Na! 

xexp[-f dtoQ[K(O)[2coth( -)] (22) 

In particular, for Na, = N, Na, = . . . .  Na~ = 0, A1 --= R 3, we obtain for the 
latter a Poisson distribution: 

(S dt~ c~176 [ f 2 Q~ N! exp - dWQIK(Q)] 2coth fl (23) 

with the average number of particles emitted by the source, at temperature 
T, given by 

( N ) =  dWQ[K(Q] 2coth (24) 
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2.2. Massive Spin-1 Particles 

Consider a massive vector field interacting with an external source j r .  
From equation (26) of Manoukian (1986), and equation (14) here, we obtain 

( G + I G - ) J = ( O + I O J e x p -  Y~ dwPlJx(P)12e~V~ 1 
h = 1 , 2 , 3  

with 

['I ] (0+[0_y=exp ~ (dx)(dx')J"(x) g.~- A+(x-x')J~(x ') (26) 

where 

Jx (p) = e.(p, A)*JU(p) (27) 

and for the polarization vectors 

e~(p, A )e~(p, A )* = (g~ + ~ )  (28) 
A = 1 , 2 , 3  

p"e.(p,A)=O, A =1,2,3  (29) 

e"(p,A)*e.(p,A')=~A~,, A,A'= 1,2,3 (30) 

Equation (25) may be rewritten in the equivalent form 

(G+lG_)J=exp -~ (dx)(dx')J"(x) g.~- m2 ] - x ,  

(31) 

where A+(x-x'; T) is defined in (16). 

2.3. Photons 

For photons interacting with a 
current J'~:O~J~(x)= O, pj'~(p)= 0, we then have 

(G+IG_) J exp (dx)(dx')J~(x)D+(x x,  

where 

conserved external electromagnetic 

D+(x-x'; T)= ~ - ~ e  iplx-x') +27riexp(fllpl)_ 1 

(32) 

(33) 
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In particular, the probability that Na, photons are emitted with momenta 
in A1 c R 3 and polarization A1 , . . . ,  and Na k photons with momenta in 
A k c R 3 and polarization Ak is 

[ [ I / k = l  ( f A ,  dO)Qi le"(Q,, A~)* Jg ( Q,)I 2 coth(flQ~ 2 ) ) N ~, 

xexp[-f dtoo[e'(Q,A)*J.(Q)[2coth(- f-)] (34) 

where A1 , . . . ,  Ak are either 1 or 2, and for the polarizations (Schwinger, 
1970) one has 

e~" ( p, a ) e" ( p, A )* = g," - p"p" +p ~ "  
A = 1,2 pp 

P = (pO, p), /5 = (pO, _p) 

2.4. Spin-~ Particles  

To treat the situation with spin-�89 particles, we refer to Section 2.4 of 
Manoukian (1986), equation (54). To this end, the diagonal transition 
amplitude for T = 0  is [see equation (54) in Manoukian (1986)] 

(N;  Nr,, N,2 , . . .  ]M; N,,, N,2 , . . .  )" 

= E *  (-1)m"(2N)(-1) m'2(2N+2N'') 

x (--1)'%(2N+2N~,+2N,_~) �9 N -m �9 " " ( I n ~ ' , )  r l  *1 " " " ( O - c  1 0 - - >  T/ ~ ~ ~ ( l~71"1 )  ~ * N r l  - - m , ,  

(35) 

with r = (p, or, e) standing for momentum, spin o- = 1,2, particle/antiparticle 
e = ;:, respectively. ~* stands for a summation over nonnegative integers 
m~, with 0-< m~ -< N~, N~ = 0 or 1. Clearly, the phase factors disappear and 
the summations over the rn~ give 

(N; N,,, N,~ , . . . IN;  N,,, N2 , . . . ) "  

= (1 + ~7" rl,,) N'(1 + ~7"2 r/,~_) N . . . .  (0+ 10_) ~ (36) 

We have to average (36) over the N~, and N with the statistical factor 
C ]]g~l (exp _~pO)N,. The easily derived equality 

cc 

E E (x,)N'(x2) N . . . . .  H (1 +x,)  (37) 
N = 0  N I + N 2 +  . . . .  N i 1 

( N i = 0 , 1 )  

gives 

C : I / ~ =  ( l + e  -~#:) (38) 
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From (36) and the equality (37) we then have 

<G+IG_)~---C<0+I0_> ~ H [ l+e -~P~  
i=1  

[ '  ] --(0+10_)" H exp ~ r l * ~ 7 ~  ~ 
i = l  

=(0+10_) ~ exp • 1 rl.rb, (39) 
i = 1  

@ 2 where we have used the fact that (~Tr, r/r,) =0. In detail, (39) may be 
rewritten as 

(G+IG_) n =(0+10_) n exp • et3po+l n p o ' e ~ p c r e  (40) 
t. p,o-,e 

Finally, we use the definitions [equations (44)-(47) in Manoukian (1986)] 

rl*=- = (2m dwp)l/29(p)u(p, or) 

~Tp=- = (2m dwp)'/zfl(p, cr)rl(p) 
(41) 

* = (2m dwp)~/z!5(p, cr)rl(-p) "q po-+ 

~7.,.+ = (2m dogp)'/2"~(-p)v(p, or) 

to rewrite (40) as 

where 

(G+lG_) '=exp[ i f  (dx)(dx')'fT(x)S+(x-x';T)'q(x')] 

Manoukian 

f (dp) . , S+(x-x';  T ) =  ~--~e 'P(~-~(-Tp+m ) 

1 2 rci6 p 2+ m 2___)) ] 
X p2q_ m 2_ ie exp[fl(p2 + m2)l/2]j (43) 

In particular, we have from (42) and (41) for the average number of 
electrons emitted by the source the expression 

1 (Ne-( T) ) : -~ f d3p /2m'~ t a n h ( ~ - ~ )  cr )ft(p. o')~ (p ) (44, 
(2~r)3 \2pO] ~ r 

pO = +(p2+ m2)1/2 

(42) 
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3. S T I M U L A T E D  E M I S S I O N S  

The amplitudes for stimulated emissions at finite temperatures may be 
found from the work of Section 2 of the present paper and our earlier 
results in Section 2 of Manoukian (1986). In particular, for spin-0 particles 
we have (diagonal a n d  nondiagonal elements) 

(N;  N1, N 2 , .  . . [ M ;  M , ,  M 2 , .  . .  ) ~  

= (N, ! N 2 ! . . .  M, ! M2! . . .  ),/2 

(i/(,)N, -m, (i/(2)N2-m~ (G+l G_) K 
X ~* (~----~)l) i ( N a - m 2 ) ! ' ' ' m , ! m 2 ! . .  " 

( i l~* )M=-~ ( i l ~ * ) ' ,  -m, 
x . - .  (45) 

( M 2 - m 2 ) !  (M1-  m,)! 

where Y~* stands for a summation over all nonnegative integers m; such 
that 0 < - mi-< min[Ni, Mi], i = 1, 2 , . . .  and 

K~ = ( d o ) p , ) l / 2 g ( p i )  coth , P'i = (P~+ rn2) 1/2 (46) 

For massive and massless spin-1 particles, the expression in (45) still 
holds true with the/(~ replaced by 

= (do)pi)  ~/2 e , ( p ~ ,  Af)*J"(pi) coth (47) 

with pO = (p~+ m2)1/2, Ai = 1, 2, 3, pO = Ip,I, A, = 1, 2, respectively. 
For spin 1/2 we have the more complicated expression [see in particular 

equation (54) in Manoukian (1986) and equation (44) in the present work] 

(N;  Nr, , Nr=,.. .  [M; M r , ,  M r 2 , . . .  ) ~  

=•* (-1)',,(N+M) 

x ( -  1)"'2( N+M+Nrl+M',)(-- 1) ~'~(N+M+N",+N'2+M'~+M"2) 

X" " " (i~Tr,)N",-'n",(i~r2)N~2--'n"2 " " �9 (a+] a_)  ~ . - .  

. . . . M  . . . .  . ,M -~ (48) X" �9 �9 tt~l~2) r2 "2tlTlr~) ~ ,~ 

where Y.* Stands for a summation over the mr,. with 0 -  < rn~, _< rain(N,,, Mr,), 
N~,, Mr, equal to 0 or 1, and finally 

~ = r/~, tanh (p~+ m2)'/21} (49) 
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4. APPLICATIONS 

As an application we consider the process: photon ~ any photons, in 
the presence of a strong external electromagnetic current, with the net 
release of a specified energy to at finite temperature. To study this radiation 
process, we use the result in (45) with (46). Clearly, the connected process 
where the initial photon gets first absorbed by the current source is 

( j l )  N~ ( j2)  N2 
(N;  N~, N2 . . . .  111)~,~- (N, !),/2 (N2!),/2" " "(G+I G_)S(iJ *) (5o) 

Suppose the net energy release is to; then the probability of the radiation 
process is 

(1~112) N' c ~  

N=0 NI+N2+ .... N NI! N2! 

x ~ ( N ,  IP,I + N=IP=I + . . . .  IP , I -  to) (51) 

Upon using the integral expression 

~(NIIp,I + N=]p2I + . . . .  Ipll- to) 

f~ dx 
= J_ -~exp{i[(N~-l)lP~l+ N21p2[+ . . . .  to]x} (52) 

the expression in (51) is explicitly summed to 

p(to) = [j,i 2 f ~  dx  exp[-i( to + 10,l)x] 
d_~o 2r 

x exp [~ l~12 exp( ilpi[x) ] l( G§ l G_)Sl2 (53) 

and hence from (32) we finally have 

d3pl exp[ -  i(~) + p~)x] P(to) = le*(p~, AI)J"(p,)I 2 (2~.)321p~ [ 3 ~ z~  

x e x p { -  f d3p [J"(p)*J.(p)] 
(2~-)321p1 

x coth ( ~  [pl) [1 - exp(i[plx)] } (54) 

where, with the exception of the total radiated energy to, the momenta and 
polarizations of the final products are not measured. 
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As a second application, we consider the power radiated by a given 
external current distribution. To this end, the average number of photons 
emitted by the external current is, from (34) and (24), 

( N ) = /  d3k c o t h ( - ~ ) J " ( k ) * J . ( k )  (55) 
(2~r)321kl 

Using for k ~ [k I the relation 

k i 
J~ = ~-~ J ' (k)  (56) 

we obtain 

(N) = N(to) dto (57) 

with Ikl = to, where 

= J (to, n) J (to, n) (58) N(to) 1--~3coth dO ' * ' 

j i ( k ) = f d t f d 3 x { e x p [ i t o ( t - n . x ) ] } j i ( x  ) 

J'(to, n) = J'(-to, n)* (59) 

f ( w ,  n) = (6 ~ - n' nJ)Y(w, n) (60) 

Here N(w) denotes the average number of photons with energy to per unit 
interval. Accordingly, the total energy radiated is 

f lo ~ =  1 dO dto to2 coth f (to, n)*.li(to, n) (61) 
16.n -3 

In the spirit of the work of Schwinger et al. (1976), the total radiated power 
is, upon symmetrization over to, 

P ( t )=16~1~f  d . I  f~  dtoe-'~ c o t h - ~  ' / : )  2 I I, ,o.,  
for finite temperatures. 

For low and high temperatures we may use, respectively, the expansions 

{1 +2e-2X+ ..  -, x ~ o o  
c o t h x =  - ( l + 2 e 2 X + . . . ) ,  x + - o o  (63) 

1 x 
coth x = - + - + .  �9 �9 x->O (64) 

x 3 
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giving 

Po(t)= 1 dO | T - e  wa tw, n) , r ~ o  (65) 
J _ ~  /-77" 

O) 1/2 ^ i  P ~ ( t ) = ~  dO - - e - i ~  )]w I J (w, T ~  (66) 

O f  particular interest is the slow motion of a point charged particle 
with instantaneous velocity vi(t), which amounts to writing 

I d3x[exp(-ik'x)]Ji(x)= I d3xji(x)=evi(t) (67) 

giving, upon performing the angular integration, at temperature T, the 
expression 

where 

P(t)=2(e2]3\47r] [ j_~27r I~176 dt~176 coth( -~)11/2  

vi(t~ = f~-oo dt' ei'~ 

In particular we have for (68) 

Po(t)=2( e2 ) 
3 \4~r/[~'(t)12' T-->0 

which is the classic Larmor formula (Panofsky 
Schwinger, 1949), and 

p~(t)=8(e2~kT f~ dto ] 
3 \4r  2-~ (sgn ~176 

Other applications are similarly carried out. 

and 

2 

~'(w) (68) 

(69) 

(70) 

Phillips, 1962; 

2 

, T ~ o o  (71)  
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